
Quantum Mechanics I
Week 13 (Solutions)

Spring Semester 2025

1 Coulomb Potential Superposition States
Let ϕnlm(r) denote the properly–normalized energy eigenfunctions of the Coulomb
potential with principal quantum number n and angular-momentum quantum numbers l
and m. Consider an electron in the state

ψ(r) = C
(
ϕ100(r) + 4i ϕ210(r)− 2

√
2ϕ21−1(r)

)
. (1.1)

For the following questions, do not use the functional form of the eigenstates!

(a) Find the normalization constant C.

Our wavefunction is given by

ψ = C
(
ϕ100 + 4iϕ210 − 2

√
2ϕ22−1

)
, (1.2)

To normalize, we compute ⟨ψ|ψ⟩ and set it to 1:

⟨ψ|ψ⟩ =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
C∗
(
ϕ100 + 4iϕ210 − 2

√
2ϕ22−1

)∗
C
(
ϕ100 + 4iϕ210 − 2

√
2ϕ22−1

)
d3r

= |C|2
(∫

ϕ∗
100ϕ100 d

3r + 16

∫
ϕ∗
210ϕ210 d

3r + 8

∫
ϕ∗
22−1ϕ22−1 d

3r
)

= |C|2(1 + 16 + 8) = 25|C|2,
(1.3)

where we have used the fact that the energy eigenfunctions are normalized and
orthogonal, so "cross-terms" do not appear. Choosing C to be real gives C = 1/5.

(b) What is the expectation value of Ĥ?

Finding the expectation value of Ĥ requires very similar manipulations, except this
time we need to "sandwich" the Hamiltonian operator in between the two copies of
ψ:

⟨Ê⟩ = ⟨ψ|Ĥ|ψ⟩. (1.4)

Note that the cross-terms still do not appear, because the energy eigenstates satisfy
the eigenvalue equation. For example

⟨ϕ100|Ĥ|ψ311⟩ = E3⟨ϕ100|ψ311⟩ = 0. (1.5)
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Armed with this, we can immediately say

E = ⟨ψ|Ĥ|ψ⟩

= |C|2
[
⟨ϕ100|Ĥ|ϕ100⟩+ 16⟨ϕ210|Ĥ|ϕ210⟩+ 8⟨ϕ22−1|Ĥ|ϕ22−1⟩

]
= |C|2

[
E1⟨ϕ100|ϕ100⟩+ 16E2⟨ϕ210|ϕ210⟩+ 8E2⟨ϕ22−1|ϕ22−1⟩

]
=

1

51

(
E1 + 24E2

)
.

(c) What is the expectation value of L̂2?

The algebra required to find L̂2 is very similar to what we have already done:

⟨L̂2⟩ = ⟨ψ|L̂2ψ)

= |C|2
[
⟨ϕ100|L̂2|ϕ100⟩+ 16⟨ϕ210|L̂2|phi210⟩+ 8⟨ϕ22−1|L̂2|ϕ22−1⟩

]
= |C|2

[
(0ℏ)2⟨ϕ100|ϕ100⟩+ 16(2ℏ)2⟨ϕ210|ϕ210⟩+ 8(6ℏ)2⟨ϕ22−1|ϕ22−1⟩

]
=

80ℏ2

25
.

(d) What is the expectation value of L̂z?

Finally, for L̂z we have

⟨L̂z⟩ = ⟨ψ|L̂z|ψ⟩

= |C|2
[
⟨ϕ100|L̂z|ϕ100⟩+ 16⟨ϕ210|L̂z|ϕ210⟩+ 8⟨ϕ22−1|L̂z|ϕ22−1)

]
= |C|2

[
(0ℏ)⟨ϕ100|ϕ100⟩+ 16(0ℏ)⟨ϕ210|ϕ210⟩+ 8(−ℏ)⟨ϕ22−1|ϕ22−1⟩

]
= −8ℏ

25
.

(e) Write down ψ(r, t) at some later time t.

Each energy eigenstate evolves in time by a phase:

ψnlm(r⃗, t) = ψnlm(r⃗, 0) e
−iEnt/ℏ. (1.6)

where En = −13.6 eV/n2 are the energies of the Hydrogen atom. Recall that the
energy (and therefore the time evolution) depends only on the principal quantum
number n. Using the superposition principle, we have

ψ(r⃗, t) = C
(
ϕ100(r⃗)e

−iE1t/ℏ + 4iϕ210(r⃗)e
−iE2t/ℏ − 2

√
2ϕ22−1(r⃗)e

−iE2t/ℏ
)
, (1.7)
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2 Muonic atom
When a slow muon interacts with matter it can get captured by the Coulomb potential
of a nucleus, thus entering into a hydrogen-like orbit. By emitting radiation, the muon
collapses to the ground level of the Coulomb potential. What is the energy of the ground
state and of the first excited state of a muon orbiting around the nucleus of 206Pb (Z=
82)? What is the frequency of the radiation emitted in the transition between the first
level and the ground state?
The muon is about 200 times heavier than the electron, so its orbits are confined much
closer to the nucleus than those of the electrons. For this reason, we can ignore the effect
of the electrons in the lead atom on the muon. at the same time, the muon is much lighter
than the nucleus of lead, so we can ignore the motion of the nucleus’s center of mass. As
a result, we can model the system through the Hamiltonian

H =
p2

2mµ

− Ze2

r
, (2.1)

where mµ is the mass of the muon. The energy levels of the bound states are

En,ℓ,m,s = −Z
2mµe

4

2n2ℏ2
. (2.2)

The ratio between the muon and the electron masses is mµ/me ≃ 207. As a result, the
spectrum has the same form of the hydrogen spectrum, but with all energies multiplied
by a factor mµ/meZ

2 ≃ 1750000! In particular, the energy for the transition between the
two lowest levels is approximately 17.8 MeV. This corresponds to a frequency 4.3× 1021

Hz.

3 The 3D Infinite Well
Consider the three-dimensional infinite well, with potential:

V (x, y, z) =

{
0, x ∈ (0, Lx), y ∈ (0, Ly), z ∈ (0, Lz)

∞ otherwise.
(3.1)

where Lx, Ly, Lz are the dimensions of the well in each spatial direction.

(a) Write down the Hamiltonian of the system.

This is the generalization of the infinite square well in one dimension, as we examined
it in class. The Hamiltonian is defined within the interval 0 < x < Lx, 0 < y < Ly,
0 < z < Lz, as:

Ĥ =
p̂2x
2m

+
p̂2y
2m

+
p̂2z
2m

. (3.2)

In the position representation, the momentum operator acts as a derivative on the
wavefunction, namely:

p̂x → −iℏ∂x, p̂y → −iℏ∂y, p̂z → −iℏ∂z. (3.3)
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Thus, the Hamiltonian becomes:

H = − ℏ2

2m

∂2

∂x2
− ℏ2

2m

∂2

∂y2
− ℏ2

2m

∂2

∂z2
. (3.4)

(b) Find the eigenstates and eigenenergies of the system by imposing the appropriate
boundary conditions.

Because there are no coupling terms between spatial coordinates, we opt for a
separable solution for the wavefunction of the form:

ψ(x, y, z) = X(x)Y (y)Z(z). (3.5)

Inserting this into the time-independent Schrödinger equation, we get

− ℏ2

2m

1

X(x)

d2

dx2
X(x)− ℏ2

2m

1

Y (y)

d2

dx2
Y (y)− ℏ2

2m

1

Z(z)

d2

dx2
Z(z) = E. (3.6)

From the latter result, we obtain three second-order ordinary differential equations,
one for each spatial dimension:

− ℏ2

2m

d2

dx2
X(x) = ExX(x), (3.7)

and likewise for y, z. The quantity Ex (and similarly for y, z) is a number to be
determined. We have studied this differential equation in class, and the solution is:

Ri(ri) =

√
2

Li

sin
πrini

Li

, Ei =
π2ℏ2n2

i

2mL2
i

, ni ∈ {1, 2, 3, ...} (3.8)

where i ∈ {x, y, z} and rx = x, ry = y, rz = z. To obtain these results, we have
imposed the usual boundary conditions for the infinite well problem, namely that
the wavefunction is zero at the ends of the well, in all three dimensions. The full
wavefunction becomes

ψ(x, y, z) =

√
8

V
sin

πxnx

Lx

sin
πyny

Ly

sin
πznz

Lz

, (3.9)

where V = LxLyLz, and we may verify that indeed this is normalized to unity
through the condition ∫

dxdydz |ψ(x, y, z)|2 = 1. (3.10)

The energies of the total system are simply:

Enx,ny ,nz = Ex + Ey + Ez =
ℏ2π2

2m

[
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

]
. (3.11)
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(c) Comment on the degeneracy in the energies for the cases Lx ̸= Ly ̸= Lz, Lx = Ly ̸=
Lz and Lx = Ly = Lz = L.

In the case Lx ̸= Ly ̸= Lz, there is no degeneracy in the energies. However, when
Li are rationally related (commensurate), then degeneracy may appear. For
commensurability, the ratio of two real numbers is a rational number. For
instance, if Lx = L,Ly = 2L,Lz = 3L, the energies become:

Enx,ny ,nz =
ℏ2π2

2mL2

[
n2
x +

n2
y

4
+
n2
z

9

]
. (3.12)

Then, the combinations (nx, ny, nz) = (2, 2, 3) and (nx, ny, nz) = (1, 4, 3) give the
same energy E ∝

[
6
]
, so there could be found degeneracy for commensurate

spatial lengths.

In the case of L = Lx = Ly ̸= Lz, there is partial degeneracy due to partial symmetry
between the x and y direction. The energies become:

Enx,ny ,nz

ℏ2π2

2m

[
n2
x + n2

y

L2
+
n2
z

L2
z

]
. (3.13)

So for example the combinations (nx, ny, nz) = (1, 2, 1) and (nx, ny, nz) = (2, 1, 1)
give the same energy.

In the case of Lx = Ly = Lz = L, we have degeneracy due to a total symmetry of
the system. The potential is the same in each dimension, and thus if we rotate the
wave around gives the same energy as before. The energies simply become:

Enx,ny ,nz

ℏ2π2

2m

n2
x + n2

y + n2
z

L2
. (3.14)

For ni = 1, there is a unique energy and wavefunction. However, for higher-order
combinations, multiple wavefunctions will correspond to the same energy
(degeneracy).

4 The Large-n, l Limit in the Hydrogen Atom
Consider an electron trapped in a Coulomb potential in the state corresponding to
maximum orbital angular momentum l = n− 1.

(a) Show that the expectation value of r̂ and r̂2 for the eigenstates of the Hydrogen
atom are

⟨r⟩ = r0n

(
n+

1

2

)
, ⟨r2⟩ = r20n

2(n+ 1)

(
n+

1

2

)
. (4.1)
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where r0 = ℏ2/(mee
2).

Hint 1: The general eigenfunctions of Hydrogen are:

ψnlm(r, θ, ϕ) =

[( 2

nr0

)3 (n− l − 1)!

2n(n+ l)!

]1/2
e−r/nr0

( 2r

nr0

)l
L2l+1
n−l−1

( 2r

nr0

)
Ylm(θ, ϕ), (4.2)

where Lk
p are the associated Laguerre polynomials and Yl,m are the spherical

harmonics.

Hint 2: You may find the following integral useful:

Γ(n) =

∫ ∞

0

tn−1e−tdt = (n− 1)!, (4.3)

where n is an integer. The function Γ(n) is called the gamma function and is defined
by the above integral.

The general hydrogen eigenfunctions are given by

ψnlm(r, θ, ϕ) =

[( 2

nr0

)3 (n− l − 1)!

2n(n+ l)!

]1/2
e−r/nr0

( 2r

nr0

)l
L2l+1
n−l−1

( 2r

nr0

)
Ylm(θ, ϕ), (4.4)

where Lk
p are the associated Laguerre polynomials. For the case when l = n − 1,

the Laguerre polynomial in the above expression becomes L2n−1
0 = 1, but in general

Lk
0 = 1. In this case, the Hydrogen eigenfunctions simplify to

ψn=n−1,m(r, θ, ϕ) =

[( 2

nr0

)3 1

2n(2n− 1)!

]1/2
e−r/nr0

( 2r

nr0

)n−1

Yn−1,m(θ, ϕ). (4.5)

From the expression above, we determine can determine the expectation value of r
as

⟨r⟩ =
∫
d3r ψ∗

n,n−1,m(r, θ, ϕ)r ψn,n−1,m(r, θ, ϕ)

=

[(
2

nr0

)3
1

2n(2n− 1)!

]
×

[∫ ∞

0

r3

(
2r

nr0

)2n−2

e−2r/nr0dr

]
×

×

[∫
dΩ Y ∗

n−1,m(θ, ϕ)Yn−1,m(θ, ϕ)

]
.

The integral contained in the third square brackets evaluated to 1 due to the
orthonormality condition of the spherical harmonics. We will now work with the
integral in the second square brackets which we will denote as I,

I =

(
2

nr0

)2n−2 ∫ ∞

0

r2n+1e−2r/nr0dr. (4.6)
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We change variables as follows 2r/nr0 = t and write:

I =

(
2

nr0

)−4 ∫ ∞

0

dt t2n+1e−t. (4.7)

Using the hint provided, the integral evaluates to:

I =

(
2

nr0

)−4

(2n+ 1)!. (4.8)

Thus, the expectation value of r takes the final form of:

⟨r⟩ = nr0

(
n+

1

2

)
. (4.9)

In a very similar fashion, we can calculate the expectation value of r2 in the state
ψn,n−1,m which evaluates to:

〈
r2
〉
= (nr0)

2

(
n+

1

2

)
(n+ 1). (4.10)

(b) For large values of n and l, show that the results of part (a), become:√
⟨r2⟩ → r0n

2,
∆r

⟨r⟩
→ 0, En → −1

2

e2

n2r0
. (4.11)

What do these results mean physically? To gain more insights of these limiting
cases, compute the energy of an circularly orbiting (classical) electron around the
proton. Take the circular orbit to have a radius of n2r0.

We first look at the expectation value of r2 squared, which for large n becomes

√
⟨r2⟩ = n2r0

√
1 +

3

2n
+

1

2n2

n→∞−−−→ n2r0. (4.12)

By definition, the standard deviation (uncertainty) in r is

∆r =
√

⟨r2⟩ − ⟨r⟩2 =

√
(nr0)2

(
n+

1

2

)
(n+ 1)− (nr0)2

(
n+

1

2

)2

=
nr0√
2

√
n+

1

2

so the relative uncertainty in position becomes

∆r

⟨r⟩
=

nr0

√
n+ 1

2√
2nr0

(
n+ 1

2

) =
1

√
2
√
n+ 1

2

n→∞−−−→ 0. (4.13)

In the expression for the energy there are no powers of n that we can neglect for
high n, so the energy retains its exact expression. The goal of this question is to
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demonstrate the correspondence principle: for high quantum numbers, quantum
systems start to behave classically. And we show this by further computing the
energy of the classical system. A system comprised of a classical electron orbiting
in a circular has energy

E =
p2

2m
− e2

r
. (4.14)

Using Newton’s second law, we find

e2

r2
= m

v2

r
⇒ mv2 =

e2

r
(4.15)

and thus the energy becomes:

E =
1

2

e2

r
− e2

r
= − e2

2r
. (4.16)

For r = n2r0, we obtain the energies of the quantum Hydrogen atom.

For large quantum numbers n, l, the energy levels of the hydrogen atom correspond
to orbits at radii r = n2r0, consistent with the Bohr model. In this semiclassical
limit, the quantum electron is well localized near the surface of a sphere of radius
n2r0, with minimal uncertainty in position. This reflects the classical picture of an
electron in a circular orbit at a fixed distance from the nucleus. Moreover, the energy
matches that of a classical electron in such an orbit, reinforcing the correspondence
between quantum and classical descriptions in the large-n, large-l limit.

(c) What can you say about the size of a weakly bound state of Hydrogen (when n is
large)? Is this an idiosyncrasy of hydrogen, or is it generally true of weakly bound
states? Hint: Discuss the range of interaction and compare to that of the finite well.

As shown in part (b), the radius of the bound state increases as n2r0. This behavior
is specific to long-range potentials (actually infinite in the case of the Coulomb
potential). For example, in a finite-range potential well the bound state is limited
more or less to the width of the well. Look at the discussion on the finite well and
its wavefunctions in Chapter 6 of the Lecture notes.

5 3D harmonic oscillator
Consider an electron confined by a harmonic potential. The Hamiltonian is

H =
p2

2me

+
1

2
meω

2r2 . (5.1)

(a) Find all energy levels. Find the degeneracy of the ground state and of the first two
excited levels.
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Although the problem has a radial symmetry, it is most easily solved in Cartesian
coordinates, since it breaks into 3 independent oscillators, in the three orthogonal
cartesian directions:

H =
p2x
2me

+
1

2
meω

2x2 +
p2y
2me

+
1

2
meω

2y2 +
p2z
2me

+
1

2
meω

2z2 . (5.2)

The eigenstates can be labeled with three quantum numbers |nx, ny, nz⟩,
representing the excitation energies along the three direction. Formally, we can say
that H = Hx + Hy + Hz, where the three operators Hx, Hy, Hz are mutually
commuting, and therefore are simultaneously diagonalizable. The energy is
Enx,ny ,nz = (3/2 + nx + ny + nz)ℏω. The ground state is non-degenerate and
corresponds to nx = ny = nz = 0. The first excited state has degeneracy 3, because
one among the three quantum numbers nx, ny, nz is one, whereas the other two
are 0. The second excited state has degeneracy 6: one can put either two quantum
numbers equal to 1 and the other equal to 0 or one quantum number equal to 2
and the other two equal to zero.

(b) Show that the ground state has ℓ = 0 (s-wave) whereas the first excited states
have ℓ = 1 (p-wave). Hint: For l = 1, consider the relation between the spatial
components (x, y, z) and the spherical harmonics Yl,m.

The ground-state wavefunction can be written as the product

ψ0(x, y, z) = ϕ0(x)ϕ0(y)ϕ0(z) (5.3)

where
ϕ0(u) =

(mω
πℏ

) 1
4
e−

mωu2

2ℏ . (5.4)

Multiplying the three Gaussian functions we find:

ψ0(x, y, z) =
(mω
πℏ

) 3
4
e−

mω
2ℏ (x2+y2+z2) =

(mω
πℏ

) 3
4
e−

mωr2

2ℏ . (5.5)

Since the wavefunction depends only on the radial coordinate |r| and not on the
angle, it has ℓ = 0 (it has s-wave symmetry).

Consider now the first excited level. The level is composed of three degenerate states
which we can choose to denote as

ψ1,0,0(x, y, z) = ϕ1(x)ϕ0(y)ϕ0(z) , ψ0,1,0(x, y, z) = ϕ0(x)ϕ1(y)ϕ0(z) ,

ψ0,0,1(x, y, z) = ϕ0(x)ϕ0(y)ϕ1(z) .
(5.6)

Here

ϕn(u) =
1√
2nn!

(mω
πℏ

) 1
4
e−

mωu2

2ℏ Hn

(√
mω

ℏ
u

)
, (5.7)

with Hn the Hermite polynomials. For n = 1,

ϕ1(u) ∝ ue−
mωu2

2ℏ . (5.8)
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As a result, up to a normalization constant,

ψ1,0,0(x, y, z) ∝ xe−
mωr2

2ℏ , ψ0,1,0(x, y, z) ∝ ye−
mωr2

2ℏ ,

ψ0,0,1(x, y, z) ∝ ze−
mωr2

2ℏ .
(5.9)

In spherical coordinates

z = r cos θ = rY1,0(θ, φ) ,

x = r sin θ cosφ =
r

2
sin θ(eiφ + e−iφ) ∝ r

2
(Y1,1(θ, φ) + Y1,−1(θ, φ))

y = r sin θ sinφ =
r

2i
sin θ(eiφ − e−iφ) ∝ r

2
(Y1,1(θ, φ)− Y1,−1(θ, φ)) .

(5.10)

Thus we see that the first excited states have all the form of a function of r only,
multiplied by a linear combination of the spherical harmonics with ℓ = 1 and m =
−1, 0, 1. (Any linear combination is an eigenstate, as the level is 3-fold degenerate).

These result could have been derived more quickly as follows. The Hamiltonian
has radial symmetry so it commutes with L̂2 and L̂z. This implies that we can
diagonalize simultaneously Ĥ, L̂2, and L̂z, obtaining a set of eigenstates labeled by
quantum numbers ñ, ℓ,m. In addition, due to symmetry, the states with different
m but the same ℓ and ñ must have the same energy. Since m = −ℓ, ..., ℓ this gives
a degeneracy of at least 2ℓ+ 1 for states with angular momentum ℓ.

Since the ground state is nondegenerate the only option is ℓ = 0. For the first
excited state, with degeneracy 3 we must have ℓ = 1. In principle, one may consider
the option that there are 3 states all having ℓ = 0. However, the wavefunctions
ψ1,0,0, ψ0,1,0, ψ0,0,1 are odd under space inversion, while wavefunctions with ℓ = 0
are symmetric under space inversion.

6 Particle in a Spherical Well
Consider a particle of mass m subjected to the following potential:

V (r) =

{
0, r < R,

∞ otherwise.
(6.1)

where r =
√
x2 + y2 + z2

(a) Write the Hamiltonian of the system using the angular momentum operator L̂2, and
the resulting Schrödinger equation.

The Hamiltonian is given by

Ĥ =
p̂2

2m
. (6.2)

Then, the Schrödinger equation is expressed in the position representation as follows:

− ℏ2

2mr

∂2

∂r2
[
rΨ(x)

]
+

1

2mr2
L2Ψ(x) = EΨ(x) (6.3)
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where L2Ψ(x) = ⟨x|L̂2|Ψ⟩ and

1

r

∂2

∂r2
[
rΨ(x)

]
=
( ∂2
∂r2

+
2

r

∂

∂r

)
Ψ(x). (6.4)

(b) The wavefunction can be factorized in the following way:

Ψ(r, θ, φ) = Ψlm(r, θ, φ) = Φl(r)Y l
m(θ, φ), (6.5)

where the functions Y l
m(θ, φ) are the spherical harmonics and Φl(r) is some function

of r, characterized by the angular momentum number l. Justify this factorization,
and find the differential equation for Φl(r).

The factorization is justified since we are dealing with a central potential, i.e. the
potential depends only on r. In the case of the spherical well, the potential is zero.
The Hamiltonian of central potentials commute with L2 and Lz, and thus they share
common eigenstates, i.e. the spherical harmonics. Thus, the angular part of the
wavefunction (including the polar angle θ and the azimuthal angle ϕ) is described by
the latter functions. A second function Φl(r) depends only on the radial coordinate
r. Using this factorization, we obtain for the radial part Φℓ(r) the equation:

− ℏ2

2m

1

r

∂2

∂r2
[
rΦl(r)

]
+

ℏ2l(l + 1)

2mr2
Φl(r) = EΦl(r), (6.6)

where we have used L2Y l
m = ℏ2l(l + 1)Y l

m. If we perform the second derivative
according to r, we obtain

∂2

∂r2
Φl(r) +

2

r

∂

∂r
Φl(r) +

[
k2 − l(l + 1)

r2

]
Φl(r) = 0, with k2 =

2mE

ℏ2
. (6.7)

(c) What are the boundary conditions to be applied to Φl(r)?

Since the potential becomes infinite for distance r > R, we require that the wave
function vanishes at R = 0, and specifically the radial part.

(d) For the case l = 0, solve the differential equation for Φl(r) by imposing the boundary
conditions. What are the energies and their degeneracy?

For l = 0, the second term of the third term in the differential equation for Φ0(r)
vanishes, and thus the DE simplifies to:

∂2

∂r2
Φ0(r) +

2

r

∂

∂r
Φ0(r) + k2Φ0(r) = 0 (6.8)

We may re-write this equation in the following way:

∂2(rΦ0)

∂r2
+ k2rΦ0 = 0. (6.9)

The solution to this differential equation takes the form:

rΦ0(r) = A sin(kr) +B cos(kr) ⇒ Φ0(r) = A
sin(kr)

r
+B

cos(kr)

r
. (6.10)

Page 11 of 14



The wave-function Φ0(r) must be continuous at r = 0, and thus B = 0, since the
cosine term diverges when r → 0. Thus:

Φ0(r) = A
sin(kr)

r
. (6.11)

where A is determined through the normalization condition.

Imposing the boundary condition we found in the previous question, i.e. Φl(R) = 0,
we find that k is restricted to values such that kR = nπ with n ∈ {1, 2, 3, ...}, since
sin(kR) = 0. We therefore find:

El=0
n =

ℏ2

2m

(nπ
R

)2
(6.12)

We notice that only the values n ∈ {1, 2, 3, ...} are considered. Indeed, for negative
values of n the wave-function Φ0 becomes negative, and the minus sign is simply a
phase factor. Note that the energy levels for fixed l = 0 depend on n only, and not
on the eigenvalue m of Lz. Hence, the degeneracy is given by the number of possible
values m can take, i.e. (2l + 1). So for l = 0 we have only one state, (2l + 1) = 1.

(e) Let us, from now on, consider the case of a generic l. For small r, we may use:

Φl(r) ∼ rs, (6.13)

where s is some parameter. Show that the differential equation for Φl(r) requires
s = l.

For small r, we can drop the term proportional to k2 since the term l(l + 1)/r2

dominates. Then, [ ∂2
∂r2

+
2

r

∂

∂r
− l(l + 1)

r2

]
rs = 0, (6.14)

from which we deduce that

s(s− 1) + 2s− l(l + 1) = 0 ⇒ s(s+ 1)− l(l + 1) = 0. (6.15)

Therefore, either s = l or s = −l − 1 satisfy this algebraic equation. We are forced
to select the solution s = l so that the wave function does not diverge.

(f) In order to take the asymptotic behavior of the wavefunction into account, we
consider

Φl(r) = λl(r)r
l, (6.16)

where λl(r) is some function of r. Show that the radial equation becomes:

λ′′l + 2(l + 1)
λ′l
r
+ k2λl = 0, where k2 =

2mE

ℏ2
. (6.17)

The prime notation corresponds to the derivative with respect to r.
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If we introduce λl(r) = r−lΦl(r) in order to take into account the asymptotic
behavior found in the previous part, we have:

Φl = λl(r) r
l (6.18)

while for the first derivative we have:

(Φl)′ = lrl−1λl(r) + rlλ′l(r) = rl
[
λ′l +

l

r
λl

]
(6.19)

and the second derivative:

(Φl)′′ = l(l−1)r l−2λl(r)+2lr l−1λ′l(r)+r
lλ′′l (r) = rl

[
λ′′l +

2l

r
λ′l +

l(l − 1)

r2
λl

]
(6.20)

Substituting into the equation for Φℓ(r),

(Φl)′′ +
2

r
(Φl)′ +

[
k2 − l(l + 1)

r2

]
Φl = 0 (6.21)

we immediately find

λ′′ℓ +
2(ℓ+ 1)

r
λ′ℓ + k2λℓ = 0. (6.22)

(g) Show that if λl(r) satisfies Eq. (6.17), then λ′l(r)/r satisfies this equation for l + 1.
In other words, check that

λl ∝ λ′l−1/r. (6.23)

Using this recurrence relation, establish the form for Φl(r). Hint: Start by dividing
the equation for λl(r), obtained in the previous question, by r.

If we take the derivative of the previous equation and divide it by r, we find

λ′′′l
r

+ 2(l + 1)
1

r

(
λ′l
r

)′

+ k2
λ′l
r

= 0. (6.24)

Using the fact that (
λ′l
r

)′′

=
λ′′′l
r

− 2

r

(
λ′l
r

)′

, (6.25)

the previous equation becomes(
λ′l
r

)′′

+ 2(l + 2)
1

r

(
λ′l
r

)′

+ k2
λ′l
r

= 0. (6.26)

By shifting l to l − 1, the last equation becomes(
λ′l−1

r

)′′

+ 2(l + 1)
1

r

(
λ′l−1

r

)′

+ k2
λ′l−1

r
= 0. (6.27)

We notice that the latter equation and Eq. (6.17) represent the same differential
equation. The only difference being that Eq. (6.17) is written for λl whereas our
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equation here is written for λ′l−1/r. We can hence conclude that λl ∝ λ′l−1/r. We
obtain a recurrence relation:

λl ∝
(

1
r

∂
∂r

)
λl−1 ∝ · · · ∝

(
1
r

∂
∂r

)l
λ0. (6.28)

Using this recurrence relation, we can determine the radial component of the
wavefunction, namely:

Φl(r) = rlλl(r) = Al r
l
(

1
r

∂
∂r

)l
Φ0(r), (6.29)

where λ0 = Φ0. Because Φl(r) must not diverge as r → 0, the cosine term in Φ0

must be removed. The functions Φl(r) are therefore spherical Bessel functions:

Φl(r) = Al r
l
(

1
r

∂
∂r

)l sin(kr)
r

. (6.30)

(h) Confirm that you obtain the correct result for the case l = 0.

For l = 0, the wavefunction becomes:

Φ0(r) = A0r
0

(
1

r

∂

∂r

)0
sin kr

r
= A0

sin kr

r
, (6.31)

and reduces to the wavefunction obtained in part (d).

(i) Determine the energies of the states having l = 1. What is their degeneracy?

For the case of l = 1, we have:

Φ1(r) ∝ ∂rΦ
0(r) ∝ cos(kr) kr − sin(kr)

r2
. (6.32)

We impose the boundary condition at R, i.e. that the radial function becomes zero
at that point, and find the condition:

tan(kR) = kR. (6.33)

From a graphical solution, the energies are therefore again quantized, and each
energy level has degeneracy 2l + 1 = 3 (again, there is no dependency on m).
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